Wednesday, August 11, 2010

AERODYANAMICS


Aerodynamics is a branch of dynamics concerned with studying the motion of air, particularly when it interacts with a moving object. Aerodynamics is a subfield of fluid dynamics and gas dynamics, with much theory shared between them. Aerodynamics is often used synonymously with gas dynamics, with the difference being that gas dynamics applies to all gases. Understanding the motion of air (often called a flow field) around an object enables the calculation of forces and moments acting on the object. Typical properties calculated for a flow field include velocity, pressure, density and temperature as a function of position and time. By defining a control volume around the flow field, equations for the conservation of mass, momentum, and energy can be defined and used to solve for the properties. The use of aerodynamics through mathematical analysis, empirical approximation and wind tunnel experimentation form the scientific basis for heavier-than-air flight.

Aerodynamic problems can be identified in a number of ways. The flow environment defines the first classification criterion. External aerodynamics is the study of flow around solid objects of various shapes. Evaluating the lift and drag on an airplane or the shock waves that form in front of the nose of a rocket are examples of external aerodynamics. Internal aerodynamics is the study of flow through passages in solid objects. For instance, internal aerodynamics encompasses the study of the airflow through a jet engine or through an air conditioning pipe.

The ratio of the problem's characteristic flow speed to the speed of sound comprises a second classification of aerodynamic problems. A problem is called subsonic if all the speeds in the problem are less than the speed of sound, transonic if speeds both below and above the speed of sound are present (normally when the characteristic speed is approximately the speed of sound), supersonic when the characteristic flow speed is greater than the speed of sound, and hypersonic when the flow speed is much greater than the speed of sound. Aerodynamicists disagree over the precise definition of hypersonic flow; minimum Mach numbers for hypersonic flow range from 3 to 12.

The influence of viscosity in the flow dictates a third classification. Some problems may encounter only very small viscous effects on the solution, in which case viscosity can be considered to be negligible. The approximations to these problems are called inviscid flows. Flows for which viscosity cannot be neglected are called viscous flows.

Aerodynamics in other fields

Aerodynamics is important in a number of applications other than aerospace engineering. It is a significant factor in any type of vehicle design, including automobiles. It is important in the prediction of forces and moments in sailing. It is used in the design of large components such as hard drive heads. Structural engineers also use aerodynamics, and particularly aeroelasticity, to calculate wind loads in the design of large buildings and bridges. Urban aerodynamics seeks to help town planners and designers improve comfort in outdoor spaces, create urban microclimates and reduce the effects of urban pollution. The field of environmental aerodynamics studies the ways atmospheric circulation and flight mechanics affect ecosystems. The aerodynamics of internal passages is important in heating/ventilation, gas piping, and in automotive engines where detailed flow patterns strongly affect the performance of the engine.

CAREERS IN AERODYNAMICS 

There are a wide variety of careers in aviation, aerodynamics and related positions. We've listed a number for you to look at in the following pages. Some careers that we consider in aerodynamics might surprise you! Take a look at what we have. Your choices of categories include aviation and airplanes: People who design and build 'em; People who test and inspect 'em; People who fly 'em; People who fix 'em; and related careers: People at the airport; People who like things that fly; People who use airplanes in their work; and People who use aerodynamics but maybe don't know it. An asterisk in front of a job means that it is listed in more than one section.

Each section begins with a list of careers that require a college degree in a technical field: Mathematics, Science, or Engineering. We've also included interviews with people who work in these positions who would like you to know more about them and their work. In addition, we've listed some technical career choices that may not always require a college degree, but that usually require a solid background in math and science or some years of technical training either on the job or through technical schools.

No comments:

Bookmark and Share hair loss products free directories Make Money Blogging